lunar periodicity - definition. What is lunar periodicity
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

THEOREM ON HOMOTOPY GROUPS
Bott periodicity; Bott element; Bott's periodicity theorem

Lunar station         
SEGMENT OF ECLIPTIC THROUGH WHICH MOON PASSES IN ITS ORBIT AROUND EARTH
Lunar mansions; Lunar mansion; Mansions of the Moon
Often called lunar mansion, a lunar station or lunar house is a segment of the ecliptic through which the Moon passes in its orbit around the Earth. The concept was used by several ancient cultures as part of their calendrical system.
Lunar seismology         
  • Apollo seismometer
  • Seismometer readings from the impact made by the Apollo 17 Saturn S-IVB impacting the Lunar surface arrive at NASA
SEISMOLOGY
Lunar seismography; Lunar seismometer; Seismology of the Moon; Selenoseismology
Lunar seismology is the study of ground motions of the Moon and the events, typically impacts or moonquakes, that excite them.
Transient lunar phenomenon         
  • Eight individual frames taken from a video of the lunar crater Clavius showing the effect of the Earth's atmosphere on astronomical images
SHORT-LIVED LIGHT, COLOR, OR CHANGE IN APPEARANCE ON THE SURFACE OF THE MOON
Transient lunar phenomena; Lunar transient phenomena; Lunar impact; Lunar Transient Phenomena; Lunar transient phenomenon; Transient Lunar Phenomenon
A transient lunar phenomenon (TLP) or lunar transient phenomenon (LTP) is a short-lived light, color or change in appearance on the surface of the Moon. The term was created by Patrick Moore in his co-authorship of NASA Technical Report R-277 Chronological Catalog of Reported Lunar Events, published in 1968.

ويكيبيديا

Bott periodicity theorem

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.